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Brownian simulations and unidirectional flux in diffusion
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The prediction of ionic currents in protein channels of biological membranes is one of the central problems
of computational molecular biophysics. Existing continuum descriptions of ionic permeation fail to capture the
rich phenomenology of the permeation process, so it is therefore necessary to resort to particle simulations.
Brownian dynamicgBD) simulations require the connection of a small discrete simulation volume to large
baths that are maintained at fixed concentrations and voltages. The continuum baths are connected to the
simulation through interfaces, located in the baths sufficiently far from the channel. Average boundary con-
centrations have to be maintained at their values in the baths by injecting and removing particles at the
interfaces. The particles injected into the simulation volume represent a unidirectional diffusion flux, while the
outgoing particles represent the unidirectional flux in the opposite direction. The classical diffusion equation
defines net diffusion flux, but not unidirectional fluxes. The stochastic formulation of classical diffusion in
terms of the Wiener process leads to a Wiener path integral, which can split the net flux into unidirectional
fluxes. These unidirectional fluxes are infinite, though the net flux is finite and agrees with classical theory. We
find that the infinite unidirectional flux is an artifact caused by replacing the Langevin dynamics with its
Smoluchowski approximation, which is classical diffusion. The Smoluchowski approximation fails on time
scales shorter than the relaxation timeyDf the Langevin equation. We find that the probability of Brownian
trajectories that cross an interface in one direction in unit tiheequals that of the probability of the
corresponding Langevin trajectories)iit=2. That is, we find the unidirectional flusource strengjmeeded
to maintain average boundary concentrations in a manner consistent with the physics of Brownian particles.
This unidirectional flux is proportional to the concentration and inversely proportionalto leading order.

We develop a BD simulation that maintains fixed average boundary concentrations in a manner consistent with
the actual physics of the interface and without creating spurious boundary layers.
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[. INTRODUCTION description has to be used on the other side. This poses the
o o ) ) fundamental question of how to describe the particle trajec-
The prediction of ionic currents in protein channels oftgries at the interface, which is the subject of this paper.

biological membranes is one of the central problems of com- \We address this problem for Brownian dynami@&D)
putational molecular biophysics. None of the existing con-simulations, connected to a practically infinite surrounding
tinuum descriptions of ionic permeation captures the richbath by an interface that serves as both a source of particles
phenomenology of the patch clamp experimefits It is  that enter the simulation and an absorbing boundary for par-
therefore necessary to resort to particle simulations of théicles that leave the simulation. The interface is expected to
permeation proced®2-7]. Computer simulations are neces- reproduce the physical conditions that actually exist on the
sarily limited to a relatively small number of mobile ions, boundary of the simulated volume. These physical conditions
due to computational difficulties. Thus a reasonable simula@re not merely the average electrostatic potential and local
tion can describe only a small portion of the experimentalconcentrations at the boundary of the volume, but also their
setup of a patch clamp experiment: the channel and its imfluctuation in time. It is important to recover the correct fluc-
mediate surroundings. The inclusion in the simulation of afuation, because the stochastic dynamics of ions in solution
part of the bath and its connection to the surrounding bat{'® nonlinear, du.e to the coupl!ng between the electrostatic
are necessary, because the conditions at the boundaries of i;@d and the motion of the mobile charges, so that averaged

channel are unknown, while they are measurable in the batipoundary conditions do not reproduce correctly averaged
nonlinear response. In a system of noninteracting particles

away from the channel. incorrect fluctuation on the boundary may still produce the
Thus the trajectories of the particles are described indi- y may P

. A . . .~ correct response outside a boundary layer in the simulation
vidually for each particle inside the simulation volume, while region[8]
outside the simulation volume they can be described only by The boundary fluctuation consists of arrival of new par-

fchelrfstatlsbncal propﬁrtleg. Itlfo_llows tgathon one S'?ﬁ of lgheﬂcles from the bath into the simulation and of the recircula-
Interface between the simulation and the surrounding bath, o particles in and out of the simulation. The random

the description of the particles is discrete, while a continuurr}mtiOn of the mobile charges brings about the fluctuation in

both the concentrations and the electrostatic field. Since the
simulation is confined to the volume inside the interface, the
*Electronic address: amits@post.tau.ac.il new and the recirculated particles have to be fed into the
"Electronic address: schuss@post.tau.ac.il simulation by a source that imitates the influx across the
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interface. The interface does not represent any physical de- *

vice that feeds trajectories back into the simulation, but is JnedX,t) = Ir(X,t) = Jr(X,1) =f vp(xv,t)dv.  (6)
rather an imaginary wall, which the physical trajectories of w

the diffusing particles cross and recross any number of times. |n contrast, the net flud(x,t) in the DE cannot be split
The efflux of simulated trajectories through the interface isthis way, because velocity is not a state variable. Actually,
seen in the simulation; however, the influx of new trajecto-the trajectories of a diffusion process do not have well-
ries, which is the unidirectional flufUF) of diffusion, has to  defined velocities, because they are nowhere differentiable

be calculated so as to reproduce the physical conditions, agith probability 1[10]. These trajectories cross and recross
mentioned above. Thus the UF is the source strength of th@very pointx infinitely many times in any time interval
influx and also the number of trajectories that cross the inft t+At], giving rise to infinite UF’s. However, the net dif-
terface in one direction per unit time. S fusion flux is finite, as indicated in E€R). This phenomenon
The mathematical problem of the UF begins with the deyas discussed in detail [r11], where a path integral descrip-
scription of diffusion by the diffusion equation. The diffusion tion of diffusion was used to define the UF. The unidirec-
equation(DE) is often considered to be an approximation of tional diffusion flux, however, is finite at absorbing bound-
the Fokker-Planck equatidifPB in the Smoluchowski limit  aries, where the UF equals the net flux. The UF's measured
of large damping. Both equations can be written as the conp giffusion across biological membranes by using radioac-

servation law tive tracer[1] are in effect UF's at absorbing boundaries,
p because the tracer is a separate ionic spgti2ls
—=-V.J. (1) An apparent paradox arises in the Smoluchowski approxi-
A mation of the FPE by the DE; namely, the UF of the DE is
The flux densityd in the diffusion equation is given by infinite for all v, while the UF of the FPE remains finite,

even in the limity— oo, in which the solution of the DE is an
1 approximation of that of the FPEL3]. The “paradox” is
Jx,H = _;,[SVP(X’t) —f)p(x.B], 2 resolved by a new derivation of the FPE for Langevin dy-
namics(LD) from the Wiener path integral. This derivation
where y is the friction coefficientor dynamical viscosity  is different than the derivation of the DE or the Smolu-
e=kgT/m, kg is Boltzmann’s constanT, is absolute tempera- chowski equation from the Wiener integrdbee, e.g.,
ture, andmis the mass of the diffusing particle. The external[17-20) by the method of Kad21]. The new derivation
acceleration field i$(x) and p(x,t) is the density(or prob-  shows that the path integral definition of UF in diffusion,
ability density of the particles9]. The flux density in the as first introduced if11], is consistent with that of UF in
FPE is given by where the net probability flux density vectorthe FPE. However, the definition of flux involves the limit

has the components At—0, that is, a time scale shorter thanyl/on which
the solution of the DE is not a valid approximation to that of
‘JX(vayt) = vp(xyvyt)a the FPE

This discrepancy between the Einstein and Langevin de-
J,(x,v,t) ==y —f(x)]p(x,v,t) - eyV,p(x,v,t). (3)  scriptions of the random motion of diffusing particles was
hinted at by both Einstein and Smoluchowski. Eins{did]
remarked that his diffusion theory is based on the assumption
that the diffusing particles are observed intermittently at
short time intervals, but not too short, while Smoluchowski
\/7 [15] showed that the variance of the displacement of Lange-

= w,

The densityp(x,t) in the diffusion equatioril) with (2) is
the probability density of the trajectories of the Smolu-
chowski stochastic differential equation

x=—f(x)+ (4) vin trajectories is quadratic infor times much shorter than
Y the relaxation time 1y, but is linear int for times much

wherew(t) is a vector of independent standard Wiener pro-onger than 14, which is the same as in Einstein’s theory of

cessegBrownian motions O"ff“SiO'? [_161' e e . .
The densityp(x,v,t) is the probability density of the The infinite unidirectional diffusion flux imposes serious
phase space trajectories of the Langevin equation limitations on BD simulations of diffusion in a finite volume

embedded in a much larger bath. Such simulations are used,
X+ yx = f(x) + \Z, W. (5)  for example, _in s@mulations of ion permeation in pr_otein
] ) ] channels of biological membrangs|. If parts of the bathing
In practically all conservation laws of the ty[t&#) Jis a  sojutions on both sides of the membrane are to be included in
net flux densityector. It is often necessary to splititinto two the simulation, the UF’s of particles into the simulation have
unidirectional components across a given surface, such thgd pe calculated. Simulations with BD would lead to increas-
the net fluxJ is their difference. Such splitting is pretty ob- ing influxes as the time step is refined.
vious in the FPE, because the veloaityat each poink tells The method of resolution of the said “paradox” is based
the two UF's apart. Thus, in one dimension, on the definition of the UF of the LD in terms of the Wiener
o 0 path integral, analogous to its definition for the BD[IL].
JLR(X,1) :f vp(x,0,0dv,  Jr (X,1) :_f vp(x,v,t)dv, The UFJ (x,t) is the probability per unit timet of trajec-
0 - tories that are on the left ofat timet and are on the right of
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x at timet+At. We show that the UF of BD coincides with Profx(t + At) = x,v(t + At) = v}
that of LD if the time unitAt in the definition of the unidi-

. e . 1
rectional diffusion flux is exactly =p(x,v,t+ At) = 0(At) + ——
i p(x.v ) =0(At) 2o ymit

At=—, (7) b o
Y X f f P(&, 7, 8(x = £ = nAt)

a —00

o= n-[-yp+f(HIALP
4eyAt

concentration is maintained on the average at the interface in
a BD simulation. The strength of the left sourdg is to
leading order independent of the efflux and depends on the

concentratiorC,, the damping coefficieny, the temperature 1o understand Eq12), we note that given that the displace-
¢, and the time steft, as given in Eq(27). To leading order  ment and velocity of the trajectory at timeare x(t)=¢

We find the strength of the source that ensures that a given
Xe p{ }dg d». (12

itis and v(t)=#, respectively, then according to EL0), the
1 displacement of the particle at timte-At is deterministic,

JRr= \/LCL+O<—). (8) independent of the value afw, and isx=£&+ pAt+o(At).
myAt Y Thus the probability density functio(pdf) of the displace-

We also show that the coordinate of a newly injected parMent is &(x=&-nAt+o(At)). It follows that the displace-
ticle has the probability distribution of the residual of the Ment contributes to the joint propagatd?) of x(t) andu(t)
normal distribution. Our simulation results show that no spu2 multiplicative factor of the Diracs function. Similarly,
rious boundary layers are formed with this scheme, whiléEd- (11) means that the conditional pdf of the velocity at
they are formed if new particles are injected at the boundanfime t+At, givenx(t)=¢ andv(t)=7, is normal with mean
The simulations also show that if the injection rate is fixed,7+[—y»+f(§]At+0o(At) and variance 2yAt+o(At), as re-
there is depletion of the population as the time step is reflected in the exponential factor of the propagator. If trajec-
fined, but there is no depletion if the rate is changed accordories are terminated at the ends of an finite or infinite inter-
ing to Eq.(8). val (a,b), the integration over the displacement variable

In Sec. Il, we derive the FPE for the L[B) from the extends only to that interval.

Wiener path integral. In Sec. Ill, we define the unidirectional The basis for our analysis of the UF is the following new
probability flux for LD by the path integral and show that is derivation of the Fokker-Planck equation from E#2). In-
indeed given by Egs6). In Sec. IV, we use the results of tegration with respect tg gives

[13] to calculate explicitly the UF in the Smoluchowski ap-

proximation to the solution of the FPE and to recover the p(x,v,t + At)

flux (2). In Sec. V, we use the results [df1] to evaluate the

UF of the BD trajectorie$4) in a finite time unitAt. In the - + ;f _

limit At— 0 the UF diverges, but if it is chosen as in Ed), olay Ve ymAt) PO mAt 7.1

the UF’s of LD and BD coincide. In Sec. VI we describe the 2

a BD simulation of diffusion between fixed concentrations xe p{— [v = 7= [= yn+f(x= 7AD]AL] }dn-
and give results of simulations. Finally, Sec. VIl is a sum- 4eyAt

mary and discussion of the results. (13

Il. DERIVATION OF THE FOKKER-PLANCK EQUATION Changing variables to
FROM A PATH INTEGRAL

The LD (5) of a diffusing particle can be written as the Yy [= yn+ fx = AD]AL

phase space system \2eyAt
k=v, b=-y+f(x)+2ey W, (9 and expanding in powers d¥t, the integral takes the form
This means that in timat the dynamics progresses accord- 1
ing to p(x,v,t+At) = =
V27a[1l - yAt + o(At)]
X(t+ At) = x(t) + v(t)At + o(At), (10

. xfx e 2duy p(x —v(1 + yAt)At
v(t+At)=v(t) +[- y(t) + f(x(t)) JAt + V2e y Aw + 0(At), —o

(11) + 0(At),v(1 + yAt) + uy2e yAt
where Aw~ A(0,At); that is, Aw is normally distributed = f(x)At(1 + yAt) + o(At),1). (14
with mean 0 and varianc&t. This means that the probability
density function evolves according to the propagator Reexpanding in powers dft, we get
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p(x = v(1 + yAt)At + 0(At),v(1 + yAt) + uy2s yAt tor, and integration with respect tfixes ¢ at x— nAt, so
- f(x)At(1 + yAt) + o(At),t) 1
J r(X1,0) = lim —fJ p(x — 7At, ,t)d7 dx
apx,v,t)  Jp(xv,t [ — — _
= p(xv,1) - vAt p(x,v )+ p(X,v )[vyAt+u\e’23yAt At—0 At X-mAt<x;
X ov 1 (” X1
Pp(x,v,t = lim = dnf p(u, 7,t)du
- f(X)At+ o(At)] + sszt% + 0(At), a0 AtJg X~ nAt
so Eq.(14) gives :f 7P(Xy, 7,)d 7. (18)
0
p(x,v,t) 1 ap(x,v,t)
p(x,v,t+At) — 1— YAt T yAtht o Expression(18) is identical to Eq.(16).
At M[vv- f()] IV. SMOLUCHOWSKI APPROXIMATION TO THE
1-yAt v UNIDIRECTIONAL CURRENT
eyAt &Zp(x,zv,t) +O(A?), The following calculations were done if13] and are
1-yAt v shown here for completeness. In the overdamped regime, as

Dividing by At and taking the limitAt—0, we obtain the Y~ *: the Smoluchowski approximation fix, v, 1) is given

Fokker-Planck equation in the form

px,u,t)  ap(xu,t)  a o2 1] apxt) 1
P =-v x +5{[w—f(x)]P(x,v,t)} p(x,u,t)~?ﬁm{p(x,t)—;{—pg( )—;f(x)p(x,t) v
#p(x,,1)
+87T2", (15) +o<%/2>}, (19

which is the conservation lawl) with the flux components ) . .
(3). The UF J_a(x.,1) is usually defined as the integral of Where the marginal densitp(x,t) satisfies the Fokker-
J(x,v,1) over the positive velocitie§13], and references F'anck-Smoluchowski equation

therein—that is,

px,t)  Ppxt) 9
Y =¢ -

oc 7 — —Lf(¥)p(x,0)]. (20)
‘]LR(let) = j vp(xlvvat)dv . (16) A x x
0 According to Egs(16) and(19), the UF is
To show that this integral actually represents the probability 2
of the trajectories that move from left to right acrogsper e [T e
unit time, we evaluate below the probability flux from a path IR t) = . vP(Xy,v,Hdv = o \2me p(x.D
integral.
1f dp(x,t) 1 1
_ _{M _ _f(x)p(x,t):|v + O(—)}dv
yL x e ¥
I1l. UNIDIRECTIONAL FLUX OF THE LANGEVIN
EQUATION € 1| dp(x,t)
= Z—D(Xl,t) - 2—[8— = fO)p(x,t)
The instantaneous unidirectional probability flux from left 7" Y oX
to right at a pointx; is defined as the probability per unit 1
time (At), of Langevin trajectories that are to the lefbafat +0 ? . (21
time t (with any velocity and propagate to the right &f at
time t+At (with any velocity, in the limit At— 0. This can Similarly, the UF from right to left is
be expressed in terms of a path integral on Langevin trajec-
tories on the real line as 0 (e
X © o0 9 ‘]RL(let) == f vp(xlyvit)dv = _p(xlft)
D) = lim — 1ng dxf d f o - am
1 = . U—
= a0 At) . Ty ) ! —o  \AeymAt = { ap(x,t) 1
—| e/ = f(X)p(x,1) +O(—).
X P&, 7,0 8x ~ £~ mAY) 2l P 7
- -~ yp+f(O]AL}? (22
I R R e VR ()Y } .
4deyAt

Both UF's in Egs(21) and(22) are finite and proportional to
Integrating with respect to eliminates the exponential fac- the marginal density at;. The net flux is the difference
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JnedXq,t) = I r(Xq,t) = Iri(Xg, 1)

:—3 PY _tpn |, 29

as in classical diffusion theofy1 3,22.

V. UNIDIRECTIONAL CURRENT IN THE
SMOLUCHOWSKI EQUATION

Classical diffusion theory, however, gives a different re-
sult. In the overdamped regime the Langevin equat®ris

reduced to the Smoluchowski equatidi
yx = f(X) + \2ey w. (24)

As in Sec. lll, the unidirectional probability curreffiux)

density at a poink; can be expressed in terms of a path

integral as

Jr(X,t) = Iim J r(Xq,t,AL), (25)
At—0

where

JLR(XI! t, At)

N e s
= 4778AtJ0 dgL d¢ exp{ 4e }{p(xl,t)

_\@t{ ul)p( 0+ (e g)apm,t)} o(A—;)}

(26)

It was shown in11] that
J r(Xq,1,Ab)

|t
=\ Pt 5 (f(x1>p<x1,t) 20l ))

VAt
o )
Similarly,
Jri(X,0) = Iim Jg (xq,t,AL),
At—0
where

JrL(Xy,t,At)

_ |y (. s
= 4778AJ0 dgL dgexp{ 4o }{p(xl,t)

+\'Xt{ g(l)p(xlat) +(¢- g)ap(Xl,t)} O(%>}

- \/7 (x3,t) - (f(xl)p(xl,t)—s p(&’;l't))

%)
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FIG. 1. The concentration profile of Brownian trajectories that
are initiated atx=0 with a normal distribution and terminated at
eitherx=0 or x=1.

If p(x;,t)>0, then bothJ g(X;,t) and Jg (X;,t) are infi-
nite, in contradiction to the result1) and (22). However,
the net flux density is finite and is given by

JnelXq,t) = Alimo {ILR(Xy, 1, AL) = Ji(Xg, 1, Ab)}

=Y e Lot - towptad |, (29
yL oX
which is identical to Eq(23).

The apparent paradox is due to the idealized properties of
the Brownian motion. More specifically, the trajectories of
the Brownian motion, and therefore also the trajectories of
the solution of Eq(24), are nowhere differentiable, so that
any trajectory of the Brownian motion crosses and recrosses
the pointx; infinitely many times in any time intervdk,t
+At] [23]. Obviously, such a vacillation creates infinite UF’s.

Not so for the trajectories of the Langevin equati@j.
They have finite continuous velocities, so that the number of
crossing and recrossing is finite. We note that settjdd
=2 in Egs.(27) and(28) gives Eqgs(21) and(22).

VI. BROWNIAN SIMULATIONS

Here we design and analyze a BD simulation of particles
diffusing between fixed concentrations. Thus, we consider
the free Brownian motiofi.e.,f=0in Eq. (4)] in the interval
[0,1]. The trajectories were produced as follovi&: Accord-
ing to the dynamicg4), new trajectories that are started at
x(—At)=0 move tox(0)=(v2e/y)|Aw|. (b) The dynamics
progresses according to the Euler scherietAt)=x(t)
+(\2e/y)Aw. (c) The trajectory is terminated (t)>1 or
X(t)<0. The parameters are=1, y=1000, andAt=1. We
ran 10 000 random trajectories and constructed the concen-
tration profile by dividing the interval into equal parts and
recording the time each trajectory spent in each bin prior to
termination. The results are shown in Fig. 1. The simulated
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FIG. 2. The concentration profile of Brownian trajectories that  FIG. 3. (Color onlin@ The concentration profile of Brownian

are initiated ak=0 with the residual of the normal distribution and trajectories that are initiated &0 and terminated at eith&=0 or

terminated at eithex=0 or x=1. x=1. Three different time stepg@t=4,1,0.25 were used, but the

injection rate of new particles remained constant. Refining the time

concentration profile is linear, but for a small depletion layerSteP decreases the concentration profile.

near the left boundary=0, where new patrticles are injected.

This is inconsistent with the steady-state DE, which predictsources, as predicted by Eq®7) and (28). Figure 4 de-

a linear concentration profile in the entire inter{@J1]. The  scribes the concentration profiles for three different values of
discrepancy stems from pafa) of the numerical scheme, At and source strengths that are proportional tgAlt/ The
which assumes that particles enter the simulation intervatoncentration profiles now converge whan— 0. The key
exactly atx=0. Howeverx=0 is just an imaginary interface. to this remedy is the calculation of the UF in diffusion.

Had the simulation been run on the entire line, particles
would hop into the simulation across the imaginary boundary
atx=0 from the left, rather than exactly at the boundary. This

iy distibution of the disiance an entering partcle covers, B EINSEI(14] and SmoluchowsHi1s](see alsg16)
‘pointed out that BD is a valid description of diffusion only at

not given its previous location, is not normal, but rather it is;. g .
. L . times that are not too short. More specifically, the Brownian
the residual of the normal distribution, given by

VIl. SUMMARY AND DISCUSSION

(30

f(x) = cf p{ (_y)z} dy,

600

500

— dt=4
— dt=1
—dt=0.25

‘\|‘l“H\)‘i
‘\.‘ L
whereg?=2¢At/y andC is determined by the normalization i
condition [;f(x)dx=1. This gives

(31) i ‘

fxX) =/ — erfc( X )
20 VZ‘T Z a00 Bt 1 E

Rerunning the simulation with the entrance @), we MLl
obtained the expected linear concentration profile, withou i ]
any depletion layergsee Fig. 2. Injecting particles exactly i
at the boundary makes their first leap into the simulation toc g
large, thus effectively decreasing the concentration profile 100
near the boundary.

Next, we changed the time stefpt of the simulation,
keeping the injection rate of new particles constant. The 0
population of trajectories inside the interval was depleted
when the time step was refingsee Fig. 3. A well-behaved FIG. 4. (Color onlin@ The concentration profile of Brownian
numerical simulation is expected to converge as the time stegajectories that are initiated a0 and terminated at eithe=0 or
is refined, rather than to result in different profiles. Thisx=1. Three different time step@t=4,1,0.25 are shown, and the
shortcoming of refining the time step is remedied by replacinjection rate of new particles is proportional toviAt. Refining the
ing the constant-rate sources with time-step-dependenime step does not alter the concentration profile.

0.2 03 0.5

X

0.1 0.4
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approximation to the Langevin equation breaks down atecover the UF of LD. At points away from the boundary,
times shorter than 1y, the relaxation time of the medium in where correct UF's do not have to be recovered, the simula-
which the particles diffuse. tion can proceed in coarser time steps.

In a BD simulation of a channel the dynamics in the chan- The above analysis can be generalized to higher dimen-
nel region may be much more complicated than the dynamsions. In three dimensions the normal component of the UF
ics near the interface, somewhere inside the continuum batlector at a poink on a given smooth surface represents the
sufficiently far from the channel. Thus the net flux is un- number of trajectories that cross the surface from one side to
known, while the boundary concentration is known. It follow the other, per unit area atin unit time. Particles cross the
that the simulation should be run with source streng#¥%  interface in one direction if their velocity satisfiesn(x)

and (28): >0, wheren(x) is the unit normal vector to the surfacexat
thus defining the domain of integration for E®).
IR~ /LCL + }‘]neb JrL~ /LCR_ }‘]net- The time course of injection of particles into a BD simu-
myAt 2 myAt 2 lation can be chosen with any interinjection probability den-

. . . ) sity, as long as the mean time between injections is chosen so
H’o_wever, Jnet IS unknown, so neglecting it relative 10 ya; the source strength is as indicated in EQ3%) and(28).
(Ve/ myADC, g will lead to steady-state boundary concentra-gqr example, these times can be chosen independently of

tions that are close, but not necessarily equalt@ndCr.  each other, without creating spurious boundary layers.
Thus a shooting procedure has to be adopted to adjust the

boundary fluxes so that the output concentrations agree with
C. andCg, and then the net flux can be readily found.

According to Egs.(27) and (28), the efflux and influx The authors thank Dr. Shela Aboud for pointing out the
remain finite at the boundaries and agree with the fluxes oflepletion phenomenon in BD simulations. The authors were
LD if the time step in the BD simulation is chosen to be partially supported by research grants from the Israel Science
At=2/y near the boundary. If the time step is chosen differ-Foundation, U.S.-Israel Binational Science Foundation, and
ently, the fluxes remain finite, but the simulation does notDARPA.
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