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The prediction of ionic currents in protein channels of biological membranes is one of the central problems
of computational molecular biophysics. Existing continuum descriptions of ionic permeation fail to capture the
rich phenomenology of the permeation process, so it is therefore necessary to resort to particle simulations.
Brownian dynamicssBDd simulations require the connection of a small discrete simulation volume to large
baths that are maintained at fixed concentrations and voltages. The continuum baths are connected to the
simulation through interfaces, located in the baths sufficiently far from the channel. Average boundary con-
centrations have to be maintained at their values in the baths by injecting and removing particles at the
interfaces. The particles injected into the simulation volume represent a unidirectional diffusion flux, while the
outgoing particles represent the unidirectional flux in the opposite direction. The classical diffusion equation
defines net diffusion flux, but not unidirectional fluxes. The stochastic formulation of classical diffusion in
terms of the Wiener process leads to a Wiener path integral, which can split the net flux into unidirectional
fluxes. These unidirectional fluxes are infinite, though the net flux is finite and agrees with classical theory. We
find that the infinite unidirectional flux is an artifact caused by replacing the Langevin dynamics with its
Smoluchowski approximation, which is classical diffusion. The Smoluchowski approximation fails on time
scales shorter than the relaxation time 1/g of the Langevin equation. We find that the probability of Brownian
trajectories that cross an interface in one direction in unit timeDt equals that of the probability of the
corresponding Langevin trajectories ifgDt=2. That is, we find the unidirectional fluxssource strengthd needed
to maintain average boundary concentrations in a manner consistent with the physics of Brownian particles.
This unidirectional flux is proportional to the concentration and inversely proportional toÎDt to leading order.
We develop a BD simulation that maintains fixed average boundary concentrations in a manner consistent with
the actual physics of the interface and without creating spurious boundary layers.
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I. INTRODUCTION

The prediction of ionic currents in protein channels of
biological membranes is one of the central problems of com-
putational molecular biophysics. None of the existing con-
tinuum descriptions of ionic permeation captures the rich
phenomenology of the patch clamp experimentsf1g. It is
therefore necessary to resort to particle simulations of the
permeation processf2–7g. Computer simulations are neces-
sarily limited to a relatively small number of mobile ions,
due to computational difficulties. Thus a reasonable simula-
tion can describe only a small portion of the experimental
setup of a patch clamp experiment: the channel and its im-
mediate surroundings. The inclusion in the simulation of a
part of the bath and its connection to the surrounding bath
are necessary, because the conditions at the boundaries of the
channel are unknown, while they are measurable in the bath,
away from the channel.

Thus the trajectories of the particles are described indi-
vidually for each particle inside the simulation volume, while
outside the simulation volume they can be described only by
their statistical properties. It follows that on one side of the
interface between the simulation and the surrounding bath
the description of the particles is discrete, while a continuum

description has to be used on the other side. This poses the
fundamental question of how to describe the particle trajec-
tories at the interface, which is the subject of this paper.

We address this problem for Brownian dynamicssBDd
simulations, connected to a practically infinite surrounding
bath by an interface that serves as both a source of particles
that enter the simulation and an absorbing boundary for par-
ticles that leave the simulation. The interface is expected to
reproduce the physical conditions that actually exist on the
boundary of the simulated volume. These physical conditions
are not merely the average electrostatic potential and local
concentrations at the boundary of the volume, but also their
fluctuation in time. It is important to recover the correct fluc-
tuation, because the stochastic dynamics of ions in solution
are nonlinear, due to the coupling between the electrostatic
field and the motion of the mobile charges, so that averaged
boundary conditions do not reproduce correctly averaged
nonlinear response. In a system of noninteracting particles
incorrect fluctuation on the boundary may still produce the
correct response outside a boundary layer in the simulation
region f8g.

The boundary fluctuation consists of arrival of new par-
ticles from the bath into the simulation and of the recircula-
tion of particles in and out of the simulation. The random
motion of the mobile charges brings about the fluctuation in
both the concentrations and the electrostatic field. Since the
simulation is confined to the volume inside the interface, the
new and the recirculated particles have to be fed into the
simulation by a source that imitates the influx across the
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interface. The interface does not represent any physical de-
vice that feeds trajectories back into the simulation, but is
rather an imaginary wall, which the physical trajectories of
the diffusing particles cross and recross any number of times.
The efflux of simulated trajectories through the interface is
seen in the simulation; however, the influx of new trajecto-
ries, which is the unidirectional fluxsUFd of diffusion, has to
be calculated so as to reproduce the physical conditions, as
mentioned above. Thus the UF is the source strength of the
influx and also the number of trajectories that cross the in-
terface in one direction per unit time.

The mathematical problem of the UF begins with the de-
scription of diffusion by the diffusion equation. The diffusion
equationsDEd is often considered to be an approximation of
the Fokker-Planck equationsFPEd in the Smoluchowski limit
of large damping. Both equations can be written as the con-
servation law

]p

]t
= − = ·J. s1d

The flux densityJ in the diffusion equation is given by

Jsx,td = −
1

g
f«=psx,td − fsxdpsx,tdg, s2d

whereg is the friction coefficientsor dynamical viscosityd,
«=kBT/m, kB is Boltzmann’s constant,T is absolute tempera-
ture, andm is the mass of the diffusing particle. The external
acceleration field isfsxd and psx ,td is the densitysor prob-
ability densityd of the particlesf9g. The flux density in the
FPE is given by where the net probability flux density vector
has the components

Jxsx,v,td = vpsx,v,td,

Jvsx,v,td = − fgv − fsxdgpsx,v,td − «g=vpsx,v,td. s3d

The densitypsx ,td in the diffusion equations1d with s2d is
the probability density of the trajectories of the Smolu-
chowski stochastic differential equation

ẋ =
1

g
fsxd +Î2«

g
ẇ, s4d

wherewstd is a vector of independent standard Wiener pro-
cessessBrownian motionsd.

The densitypsx ,v ,td is the probability density of the
phase space trajectories of the Langevin equation

ẍ + gẋ = fsxd + Î2«g ẇ. s5d

In practically all conservation laws of the types1d J is a
net flux densityvector. It is often necessary to split it into two
unidirectional components across a given surface, such that
the net fluxJ is their difference. Such splitting is pretty ob-
vious in the FPE, because the velocityv at each pointx tells
the two UF’s apart. Thus, in one dimension,

JLRsx,td =E
0

`

vpsx,v,tddv, JRLsx,td = −E
−`

0

vpsx,v,tddv,

Jnetsx,td = JLRsx,td − JRLsx,td =E
−`

`

vpsx,v,tddv. s6d

In contrast, the net fluxJsx,td in the DE cannot be split
this way, because velocity is not a state variable. Actually,
the trajectories of a diffusion process do not have well-
defined velocities, because they are nowhere differentiable
with probability 1 f10g. These trajectories cross and recross
every point x infinitely many times in any time interval
ft ,t+Dtg, giving rise to infinite UF’s. However, the net dif-
fusion flux is finite, as indicated in Eq.s2d. This phenomenon
was discussed in detail inf11g, where a path integral descrip-
tion of diffusion was used to define the UF. The unidirec-
tional diffusion flux, however, is finite at absorbing bound-
aries, where the UF equals the net flux. The UF’s measured
in diffusion across biological membranes by using radioac-
tive tracer f1g are in effect UF’s at absorbing boundaries,
because the tracer is a separate ionic speciesf12g.

An apparent paradox arises in the Smoluchowski approxi-
mation of the FPE by the DE; namely, the UF of the DE is
infinite for all g, while the UF of the FPE remains finite,
even in the limitg→`, in which the solution of the DE is an
approximation of that of the FPEf13g. The “paradox” is
resolved by a new derivation of the FPE for Langevin dy-
namicssLDd from the Wiener path integral. This derivation
is different than the derivation of the DE or the Smolu-
chowski equation from the Wiener integralssee, e.g.,
f17–20gd by the method of Kacf21g. The new derivation
shows that the path integral definition of UF in diffusion,
as first introduced inf11g, is consistent with that of UF in
the FPE. However, the definition of flux involves the limit
Dt→0, that is, a time scale shorter than 1/g, on which
the solution of the DE is not a valid approximation to that of
the FPE.

This discrepancy between the Einstein and Langevin de-
scriptions of the random motion of diffusing particles was
hinted at by both Einstein and Smoluchowski. Einsteinf14g
remarked that his diffusion theory is based on the assumption
that the diffusing particles are observed intermittently at
short time intervals, but not too short, while Smoluchowski
f15g showed that the variance of the displacement of Lange-
vin trajectories is quadratic int for times much shorter than
the relaxation time 1/g, but is linear in t for times much
longer than 1/g, which is the same as in Einstein’s theory of
diffusion f16g.

The infinite unidirectional diffusion flux imposes serious
limitations on BD simulations of diffusion in a finite volume
embedded in a much larger bath. Such simulations are used,
for example, in simulations of ion permeation in protein
channels of biological membranesf1g. If parts of the bathing
solutions on both sides of the membrane are to be included in
the simulation, the UF’s of particles into the simulation have
to be calculated. Simulations with BD would lead to increas-
ing influxes as the time step is refined.

The method of resolution of the said “paradox” is based
on the definition of the UF of the LD in terms of the Wiener
path integral, analogous to its definition for the BD inf11g.
The UFJLRsx,td is the probability per unit timeDt of trajec-
tories that are on the left ofx at timet and are on the right of
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x at time t+Dt. We show that the UF of BD coincides with
that of LD if the time unitDt in the definition of the unidi-
rectional diffusion flux is exactly

Dt =
2

g
. s7d

We find the strength of the source that ensures that a given
concentration is maintained on the average at the interface in
a BD simulation. The strength of the left sourceJLR is to
leading order independent of the efflux and depends on the
concentrationCL, the damping coefficientg, the temperature
«, and the time stepDt, as given in Eq.s27d. To leading order
it is

JLR =Î «

pgDt
CL + OS1

g
D . s8d

We also show that the coordinate of a newly injected par-
ticle has the probability distribution of the residual of the
normal distribution. Our simulation results show that no spu-
rious boundary layers are formed with this scheme, while
they are formed if new particles are injected at the boundary.
The simulations also show that if the injection rate is fixed,
there is depletion of the population as the time step is re-
fined, but there is no depletion if the rate is changed accord-
ing to Eq.s8d.

In Sec. II, we derive the FPE for the LDs5d from the
Wiener path integral. In Sec. III, we define the unidirectional
probability flux for LD by the path integral and show that is
indeed given by Eqs.s6d. In Sec. IV, we use the results of
f13g to calculate explicitly the UF in the Smoluchowski ap-
proximation to the solution of the FPE and to recover the
flux s2d. In Sec. V, we use the results off11g to evaluate the
UF of the BD trajectoriess4d in a finite time unitDt. In the
limit Dt→0 the UF diverges, but if it is chosen as in Eq.s7d,
the UF’s of LD and BD coincide. In Sec. VI we describe the
a BD simulation of diffusion between fixed concentrations
and give results of simulations. Finally, Sec. VII is a sum-
mary and discussion of the results.

II. DERIVATION OF THE FOKKER-PLANCK EQUATION
FROM A PATH INTEGRAL

The LD s5d of a diffusing particle can be written as the
phase space system

ẋ = v, v̇ = − gv + fsxd + Î2«g ẇ. s9d

This means that in timeDt the dynamics progresses accord-
ing to

xst + Dtd = xstd + vstdDt + osDtd, s10d

vst + Dtd = vstd + f− gvstd + f„xstd…gDt + Î2«g Dw + osDtd,

s11d

where Dw,Ns0,Dtd; that is, Dw is normally distributed
with mean 0 and varianceDt. This means that the probability
density function evolves according to the propagator

Probhxst + Dtd = x,vst + Dtd = vj

= psx,v,t + Dtd = osDtd +
1

Î4«gpDt

3E
a

bE
−`

`

psj,h,tddsx − j − hDtd

3expH−
fv − h − f− gh + fsjdgDtg2

4«gDt
Jdj dh. s12d

To understand Eq.s12d, we note that given that the displace-
ment and velocity of the trajectory at timet are xstd=j
and vstd=h, respectively, then according to Eq.s10d, the
displacement of the particle at timet+Dt is deterministic,
independent of the value ofDw, and is x=j+hDt+osDtd.
Thus the probability density functionspdfd of the displace-
ment is d(x−j−hDt+osDtd). It follows that the displace-
ment contributes to the joint propagators12d of xstd andvstd
a multiplicative factor of the Diracd function. Similarly,
Eq. s11d means that the conditional pdf of the velocity at
time t+Dt, given xstd=j and vstd=h, is normal with mean
h+f−gh+ fsjdgDt+osDtd and variance 2egDt+osDtd, as re-
flected in the exponential factor of the propagator. If trajec-
tories are terminated at the ends of an finite or infinite inter-
val sa,bd, the integration over the displacement variable
extends only to that interval.

The basis for our analysis of the UF is the following new
derivation of the Fokker-Planck equation from Eq.s12d. In-
tegration with respect toj gives

psx,v,t + Dtd

= osDtd +
1

Î4«gpDt
E

−`

`

psx − hDt,h,td

3expH−
fv − h − f− gh + fsx − hDtdgDtg2

4«gDt
Jdh.

s13d

Changing variables to

− u =
v − h − f− gh + fsx − hDtdgDt

Î2«gDt

and expanding in powers ofDt, the integral takes the form

psx,v,t + Dtd =
1

Î2pf1 − gDt + osDtdg

3E
−`

`

e−u2/2du p„x − vs1 + gDtdDt

+ osDtd,vs1 + gDtd + uÎ2«gDt

− fsxdDts1 + gDtd + osDtd,t…. s14d

Reexpanding in powers ofDt, we get
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p„x − vs1 + gDtdDt + osDtd,vs1 + gDtd + uÎ2«gDt

− fsxdDts1 + gDtd + osDtd,t…

= psx,v,td − vDt
]psx,v,td

]x
+

]psx,v,td
]v

fvgDt + uÎ2«gDt

− fsxdDt + osDtdg + «gu2Dt
]2psx,v,td

]v2 + osDtd,

so Eq.s14d gives

psx,v,t + Dtd −
psx,v,td
1 − gDt

= −
1

1 − gDt
vDt

]psx,v,td
]x

+
Dt

1 − gDt

]psx,v,td
]v

fvg − fsxdg

+
«gDt

1 − gDt

]2psx,v,td
]v2 + OsDt3/2d.

Dividing by Dt and taking the limitDt→0, we obtain the
Fokker-Planck equation in the form

]psx,v,td
]t

= − v
]psx,v,td

]x
+

]

]v
hfgv − fsxdgpsx,v,tdj

+ «g
]2psx,v,td

]v2 , s15d

which is the conservation laws1d with the flux components
s3d. The UF JLRsx1,td is usually defined as the integral of
Jxsx1,v ,td over the positive velocitiessf13g, and references
thereind—that is,

JLRsx1,td =E
0

`

vpsx1,v,tddv. s16d

To show that this integral actually represents the probability
of the trajectories that move from left to right acrossx1 per
unit time, we evaluate below the probability flux from a path
integral.

III. UNIDIRECTIONAL FLUX OF THE LANGEVIN
EQUATION

The instantaneous unidirectional probability flux from left
to right at a pointx1 is defined as the probability per unit
time sDtd, of Langevin trajectories that are to the left ofx1 at
time t swith any velocityd and propagate to the right ofx1 at
time t+Dt swith any velocityd, in the limit Dt→0. This can
be expressed in terms of a path integral on Langevin trajec-
tories on the real line as

JLRsx1,td = lim
Dt→0

1

Dt
E

−`

x1

djE
x1

`

dxE
−`

`

dhE
−`

`

dv
1

Î4«gpDt

3psj,h,tddsx − j − hDtd

3expH−
hv − h − f− gh + fsjdgDtj2

4«gDt
J . s17d

Integrating with respect tov eliminates the exponential fac-

tor, and integration with respect toj fixes j at x−hDt, so

JLRsx1,td = lim
Dt→0

1

Dt
E E

x−hDt,x1

psx − hDt,h,tddh dx

= lim
Dt→0

1

Dt
E

0

`

dhE
x1−hDt

x1

psu,h,tddu

=E
0

`

hpsx1,h,tddh. s18d

Expressions18d is identical to Eq.s16d.

IV. SMOLUCHOWSKI APPROXIMATION TO THE
UNIDIRECTIONAL CURRENT

The following calculations were done inf13g and are
shown here for completeness. In the overdamped regime, as
g→`, the Smoluchowski approximation topsx,v ,td is given
by

psx,v,td ,
e−v2/2e

Î2pe
Hpsx,td −

1

g
F ]psx,td

]x
−

1

e
fsxdpsx,tdGv

+ OS 1

g2DJ , s19d

where the marginal densitypsx,td satisfies the Fokker-
Planck-Smoluchowski equation

g
]psx,td

]t
= «

]2psx,td
]x2 −

]

]x
ffsxdpsx,tdg. s20d

According to Eqs.s16d and s19d, the UF is

JLRsx1,td =E
0

`

vpsx1,v,tddv =E
0

`

v
e−v2/2e

Î2pe
Hpsx,td

−
1

g
F ]psx,td

]x
−

1

e
fsxdpsx,tdGv + OS 1

g2DJdv

=Î «

2p
psx1,td −

1

2g
F«

]psx,td
]x

− fsxdpsx,tdG
+ OS 1

g2D . s21d

Similarly, the UF from right to left is

JRLsx1,td = −E
−`

0

vpsx1,v,tddv =Î «

2p
psx1,td

+
1

2g
F«

]psx,td
]x

− fsxdpsx,tdG + OS 1

g2D .

s22d

Both UF’s in Eqs.s21d ands22d are finite and proportional to
the marginal density atx1. The net flux is the difference
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Jnetsx1,td = JLRsx1,td − JRLsx1,td

= −
1

g
F«

]psx,td
]x

− fsxdpsx,tdG , s23d

as in classical diffusion theoryf13,22g.

V. UNIDIRECTIONAL CURRENT IN THE
SMOLUCHOWSKI EQUATION

Classical diffusion theory, however, gives a different re-
sult. In the overdamped regime the Langevin equations9d is
reduced to the Smoluchowski equationf9g

gẋ = fsxd + Î2«g ẇ. s24d

As in Sec. III, the unidirectional probability currentsfluxd
density at a pointx1 can be expressed in terms of a path
integral as

JLRsx1,td = lim
Dt→0

JLRsx1,t,Dtd, s25d

where

JLRsx1,t,Dtd

=Î g

4p«Dt
E

0

`

djE
j

`

dz expH−
gz2

4«
JHpsx1,td

− ÎDtF−
zfsx1d

2«
psx1,td + sz − jd

]psx1,td
]x

G + OSDt

g
DJ .

s26d

It was shown inf11g that

JLRsx1,t,Dtd

=Î «

pgDt
psx1,td +

1

2g
S fsx1dpsx1,td − «

]psx1,td
]x

D
+ OSÎDt

g3/2D . s27d

Similarly,

JRLsx1,td = lim
Dt→0

JRLsx1,t,Dtd,

where

JRLsx1,t,Dtd

=Î g

4p«Dt
E

0

`

djE
j

`

dz expH−
gz2

4«
JHpsx1,td

+ ÎDtF−
zfsx1d

2«
psx1,td + sz − jd

]psx1,td
]x

G + OSDt

g
DJ

=Î «

pgDt
psx1,td −

1

2g
S fsx1dpsx1,td − «

]psx1,td
]x

D
+ OSÎDt

g3/2D . s28d

If psx1,td.0, then bothJLRsx1,td and JRLsx1,td are infi-
nite, in contradiction to the resultss21d and s22d. However,
the net flux density is finite and is given by

Jnetsx1,td = lim
Dt→0

hJLRsx1,t,Dtd − JRLsx1,t,Dtdj

= −
1

g
F«

]

]x
psx1,td − fsx1dpsx1,tdG , s29d

which is identical to Eq.s23d.
The apparent paradox is due to the idealized properties of

the Brownian motion. More specifically, the trajectories of
the Brownian motion, and therefore also the trajectories of
the solution of Eq.s24d, are nowhere differentiable, so that
any trajectory of the Brownian motion crosses and recrosses
the pointx1 infinitely many times in any time intervalft ,t
+Dtg f23g. Obviously, such a vacillation creates infinite UF’s.

Not so for the trajectories of the Langevin equations9d.
They have finite continuous velocities, so that the number of
crossing and recrossing is finite. We note that settinggDt
=2 in Eqs.s27d and s28d gives Eqs.s21d and s22d.

VI. BROWNIAN SIMULATIONS

Here we design and analyze a BD simulation of particles
diffusing between fixed concentrations. Thus, we consider
the free Brownian motionfi.e., f =0 in Eq. s4dg in the interval
f0,1g. The trajectories were produced as follows:sad Accord-
ing to the dynamicss4d, new trajectories that are started at
xs−Dtd=0 move to xs0d=sÎ2« /gduDwu. sbd The dynamics
progresses according to the Euler schemexst+Dtd=xstd
+sÎ2« /gdDw. scd The trajectory is terminated ifxstd.1 or
xstd,0. The parameters are«=1, g=1000, andDt=1. We
ran 10 000 random trajectories and constructed the concen-
tration profile by dividing the interval into equal parts and
recording the time each trajectory spent in each bin prior to
termination. The results are shown in Fig. 1. The simulated

FIG. 1. The concentration profile of Brownian trajectories that
are initiated atx=0 with a normal distribution and terminated at
eitherx=0 or x=1.
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concentration profile is linear, but for a small depletion layer
near the left boundaryx=0, where new particles are injected.
This is inconsistent with the steady-state DE, which predicts
a linear concentration profile in the entire intervalf0,1g. The
discrepancy stems from partsad of the numerical scheme,
which assumes that particles enter the simulation interval
exactly atx=0. However,x=0 is just an imaginary interface.
Had the simulation been run on the entire line, particles
would hop into the simulation across the imaginary boundary
at x=0 from the left, rather than exactly at the boundary. This
situation is familiar from renewal theoryf24g. The probabil-
ity distribution of the distance an entering particle covers,
not given its previous location, is not normal, but rather it is
the residual of the normal distribution, given by

fsxd = CE
−`

0

expH−
sx − yd2

2s2 Jdy, s30d

wheres2=2«Dt /g andC is determined by the normalization
conditione0

`fsxddx=1. This gives

fsxd =Î p

2s
erfcS x

Î2s
D . s31d

Rerunning the simulation with the entrance pdffsxd, we
obtained the expected linear concentration profile, without
any depletion layersssee Fig. 2d. Injecting particles exactly
at the boundary makes their first leap into the simulation too
large, thus effectively decreasing the concentration profile
near the boundary.

Next, we changed the time stepDt of the simulation,
keeping the injection rate of new particles constant. The
population of trajectories inside the interval was depleted
when the time step was refinedssee Fig. 3d. A well-behaved
numerical simulation is expected to converge as the time step
is refined, rather than to result in different profiles. This
shortcoming of refining the time step is remedied by replac-
ing the constant-rate sources with time-step-dependent

sources, as predicted by Eqs.s27d and s28d. Figure 4 de-
scribes the concentration profiles for three different values of
Dt and source strengths that are proportional to 1/ÎDt. The
concentration profiles now converge whenDt→0. The key
to this remedy is the calculation of the UF in diffusion.

VII. SUMMARY AND DISCUSSION

Both Einsteinf14g and Smoluchowskif15g ssee alsof16gd
pointed out that BD is a valid description of diffusion only at
times that are not too short. More specifically, the Brownian

FIG. 2. The concentration profile of Brownian trajectories that
are initiated atx=0 with the residual of the normal distribution and
terminated at eitherx=0 or x=1.

FIG. 3. sColor onlined The concentration profile of Brownian
trajectories that are initiated atx=0 and terminated at eitherx=0 or
x=1. Three different time stepssDt=4,1,0.25d were used, but the
injection rate of new particles remained constant. Refining the time
step decreases the concentration profile.

FIG. 4. sColor onlined The concentration profile of Brownian
trajectories that are initiated atx=0 and terminated at eitherx=0 or
x=1. Three different time stepssDt=4,1,0.25d are shown, and the
injection rate of new particles is proportional to 1/ÎDt. Refining the
time step does not alter the concentration profile.
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approximation to the Langevin equation breaks down at
times shorter than 1/g, the relaxation time of the medium in
which the particles diffuse.

In a BD simulation of a channel the dynamics in the chan-
nel region may be much more complicated than the dynam-
ics near the interface, somewhere inside the continuum bath,
sufficiently far from the channel. Thus the net flux is un-
known, while the boundary concentration is known. It follow
that the simulation should be run with source strengthss27d
and s28d:

JLR ,Î «

pgDt
CL +

1

2
Jnet, JRL ,Î «

pgDt
CR −

1

2
Jnet.

However, Jnet is unknown, so neglecting it relative to
sÎ« /pgDtdCL,R will lead to steady-state boundary concentra-
tions that are close, but not necessarily equal, toCL andCR.
Thus a shooting procedure has to be adopted to adjust the
boundary fluxes so that the output concentrations agree with
CL andCR, and then the net flux can be readily found.

According to Eqs.s27d and s28d, the efflux and influx
remain finite at the boundaries and agree with the fluxes of
LD if the time step in the BD simulation is chosen to be
Dt=2/g near the boundary. If the time step is chosen differ-
ently, the fluxes remain finite, but the simulation does not

recover the UF of LD. At points away from the boundary,
where correct UF’s do not have to be recovered, the simula-
tion can proceed in coarser time steps.

The above analysis can be generalized to higher dimen-
sions. In three dimensions the normal component of the UF
vector at a pointx on a given smooth surface represents the
number of trajectories that cross the surface from one side to
the other, per unit area atx in unit time. Particles cross the
interface in one direction if their velocity satisfiesv ·nsxd
.0, wherensxd is the unit normal vector to the surface atx,
thus defining the domain of integration for Eq.s6d.

The time course of injection of particles into a BD simu-
lation can be chosen with any interinjection probability den-
sity, as long as the mean time between injections is chosen so
that the source strength is as indicated in Eqs.s27d ands28d.
For example, these times can be chosen independently of
each other, without creating spurious boundary layers.
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